3.212 \(\int x \sqrt {d-c^2 d x^2} (a+b \sin ^{-1}(c x))^2 \, dx\)

Optimal. Leaf size=188 \[ \frac {2 b x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 c \sqrt {1-c^2 x^2}}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^2 d}-\frac {2 b c x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{9 \sqrt {1-c^2 x^2}}+\frac {2 b^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}{27 c^2}+\frac {4 b^2 \sqrt {d-c^2 d x^2}}{9 c^2} \]

[Out]

-1/3*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))^2/c^2/d+4/9*b^2*(-c^2*d*x^2+d)^(1/2)/c^2+2/27*b^2*(-c^2*x^2+1)*(-c
^2*d*x^2+d)^(1/2)/c^2+2/3*b*x*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)/c/(-c^2*x^2+1)^(1/2)-2/9*b*c*x^3*(a+b*arc
sin(c*x))*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 188, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {4677, 4645, 444, 43} \[ -\frac {2 b c x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{9 \sqrt {1-c^2 x^2}}+\frac {2 b x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 c \sqrt {1-c^2 x^2}}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^2 d}+\frac {2 b^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}{27 c^2}+\frac {4 b^2 \sqrt {d-c^2 d x^2}}{9 c^2} \]

Antiderivative was successfully verified.

[In]

Int[x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2,x]

[Out]

(4*b^2*Sqrt[d - c^2*d*x^2])/(9*c^2) + (2*b^2*(1 - c^2*x^2)*Sqrt[d - c^2*d*x^2])/(27*c^2) + (2*b*x*Sqrt[d - c^2
*d*x^2]*(a + b*ArcSin[c*x]))/(3*c*Sqrt[1 - c^2*x^2]) - (2*b*c*x^3*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/(9*
Sqrt[1 - c^2*x^2]) - ((d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x])^2)/(3*c^2*d)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 4645

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2)
^p, x]}, Dist[a + b*ArcSin[c*x], u, x] - Dist[b*c, Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x], x]] /; F
reeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2 \, dx &=-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^2 d}+\frac {\left (2 b \sqrt {d-c^2 d x^2}\right ) \int \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right ) \, dx}{3 c \sqrt {1-c^2 x^2}}\\ &=\frac {2 b x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 c \sqrt {1-c^2 x^2}}-\frac {2 b c x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{9 \sqrt {1-c^2 x^2}}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^2 d}-\frac {\left (2 b^2 \sqrt {d-c^2 d x^2}\right ) \int \frac {x \left (1-\frac {c^2 x^2}{3}\right )}{\sqrt {1-c^2 x^2}} \, dx}{3 \sqrt {1-c^2 x^2}}\\ &=\frac {2 b x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 c \sqrt {1-c^2 x^2}}-\frac {2 b c x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{9 \sqrt {1-c^2 x^2}}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^2 d}-\frac {\left (b^2 \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \frac {1-\frac {c^2 x}{3}}{\sqrt {1-c^2 x}} \, dx,x,x^2\right )}{3 \sqrt {1-c^2 x^2}}\\ &=\frac {2 b x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 c \sqrt {1-c^2 x^2}}-\frac {2 b c x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{9 \sqrt {1-c^2 x^2}}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^2 d}-\frac {\left (b^2 \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \left (\frac {2}{3 \sqrt {1-c^2 x}}+\frac {1}{3} \sqrt {1-c^2 x}\right ) \, dx,x,x^2\right )}{3 \sqrt {1-c^2 x^2}}\\ &=\frac {4 b^2 \sqrt {d-c^2 d x^2}}{9 c^2}+\frac {2 b^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}{27 c^2}+\frac {2 b x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 c \sqrt {1-c^2 x^2}}-\frac {2 b c x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{9 \sqrt {1-c^2 x^2}}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 c^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.30, size = 120, normalized size = 0.64 \[ \frac {\sqrt {d-c^2 d x^2} \left (\left (c^2 x^2-1\right ) \left (a+b \sin ^{-1}(c x)\right )^2-\frac {2 b \left (3 a c x \left (c^2 x^2-3\right )+b \sqrt {1-c^2 x^2} \left (c^2 x^2-7\right )+3 b c x \left (c^2 x^2-3\right ) \sin ^{-1}(c x)\right )}{9 \sqrt {1-c^2 x^2}}\right )}{3 c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2,x]

[Out]

(Sqrt[d - c^2*d*x^2]*((-1 + c^2*x^2)*(a + b*ArcSin[c*x])^2 - (2*b*(b*Sqrt[1 - c^2*x^2]*(-7 + c^2*x^2) + 3*a*c*
x*(-3 + c^2*x^2) + 3*b*c*x*(-3 + c^2*x^2)*ArcSin[c*x]))/(9*Sqrt[1 - c^2*x^2])))/(3*c^2)

________________________________________________________________________________________

fricas [A]  time = 0.80, size = 208, normalized size = 1.11 \[ \frac {6 \, {\left (a b c^{3} x^{3} - 3 \, a b c x + {\left (b^{2} c^{3} x^{3} - 3 \, b^{2} c x\right )} \arcsin \left (c x\right )\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {-c^{2} x^{2} + 1} + {\left ({\left (9 \, a^{2} - 2 \, b^{2}\right )} c^{4} x^{4} - 2 \, {\left (9 \, a^{2} - 8 \, b^{2}\right )} c^{2} x^{2} + 9 \, {\left (b^{2} c^{4} x^{4} - 2 \, b^{2} c^{2} x^{2} + b^{2}\right )} \arcsin \left (c x\right )^{2} + 9 \, a^{2} - 14 \, b^{2} + 18 \, {\left (a b c^{4} x^{4} - 2 \, a b c^{2} x^{2} + a b\right )} \arcsin \left (c x\right )\right )} \sqrt {-c^{2} d x^{2} + d}}{27 \, {\left (c^{4} x^{2} - c^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

1/27*(6*(a*b*c^3*x^3 - 3*a*b*c*x + (b^2*c^3*x^3 - 3*b^2*c*x)*arcsin(c*x))*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 +
 1) + ((9*a^2 - 2*b^2)*c^4*x^4 - 2*(9*a^2 - 8*b^2)*c^2*x^2 + 9*(b^2*c^4*x^4 - 2*b^2*c^2*x^2 + b^2)*arcsin(c*x)
^2 + 9*a^2 - 14*b^2 + 18*(a*b*c^4*x^4 - 2*a*b*c^2*x^2 + a*b)*arcsin(c*x))*sqrt(-c^2*d*x^2 + d))/(c^4*x^2 - c^2
)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [C]  time = 0.30, size = 700, normalized size = 3.72 \[ -\frac {a^{2} \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{3 c^{2} d}+b^{2} \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 c^{4} x^{4}-5 c^{2} x^{2}-4 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+3 i \sqrt {-c^{2} x^{2}+1}\, x c +1\right ) \left (6 i \arcsin \left (c x \right )+9 \arcsin \left (c x \right )^{2}-2\right )}{216 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) \left (\arcsin \left (c x \right )^{2}-2+2 i \arcsin \left (c x \right )\right )}{8 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )^{2}-2-2 i \arcsin \left (c x \right )\right )}{8 c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+4 c^{4} x^{4}-3 i \sqrt {-c^{2} x^{2}+1}\, x c -5 c^{2} x^{2}+1\right ) \left (-6 i \arcsin \left (c x \right )+9 \arcsin \left (c x \right )^{2}-2\right )}{216 c^{2} \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 c^{4} x^{4}-5 c^{2} x^{2}-4 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+3 i \sqrt {-c^{2} x^{2}+1}\, x c +1\right ) \left (i+3 \arcsin \left (c x \right )\right )}{72 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) \left (i+\arcsin \left (c x \right )\right )}{8 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )-i\right )}{8 c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+4 c^{4} x^{4}-3 i \sqrt {-c^{2} x^{2}+1}\, x c -5 c^{2} x^{2}+1\right ) \left (-i+3 \arcsin \left (c x \right )\right )}{72 c^{2} \left (c^{2} x^{2}-1\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x)

[Out]

-1/3*a^2/c^2/d*(-c^2*d*x^2+d)^(3/2)+b^2*(1/216*(-d*(c^2*x^2-1))^(1/2)*(4*c^4*x^4-5*c^2*x^2-4*I*(-c^2*x^2+1)^(1
/2)*x^3*c^3+3*I*(-c^2*x^2+1)^(1/2)*x*c+1)*(6*I*arcsin(c*x)+9*arcsin(c*x)^2-2)/c^2/(c^2*x^2-1)-1/8*(-d*(c^2*x^2
-1))^(1/2)*(c^2*x^2-I*(-c^2*x^2+1)^(1/2)*x*c-1)*(arcsin(c*x)^2-2+2*I*arcsin(c*x))/c^2/(c^2*x^2-1)-1/8*(-d*(c^2
*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)*(arcsin(c*x)^2-2-2*I*arcsin(c*x))/c^2/(c^2*x^2-1)+1/216*(-
d*(c^2*x^2-1))^(1/2)*(4*I*(-c^2*x^2+1)^(1/2)*x^3*c^3+4*c^4*x^4-3*I*(-c^2*x^2+1)^(1/2)*x*c-5*c^2*x^2+1)*(-6*I*a
rcsin(c*x)+9*arcsin(c*x)^2-2)/c^2/(c^2*x^2-1))+2*a*b*(1/72*(-d*(c^2*x^2-1))^(1/2)*(4*c^4*x^4-5*c^2*x^2-4*I*(-c
^2*x^2+1)^(1/2)*x^3*c^3+3*I*(-c^2*x^2+1)^(1/2)*x*c+1)*(I+3*arcsin(c*x))/c^2/(c^2*x^2-1)-1/8*(-d*(c^2*x^2-1))^(
1/2)*(c^2*x^2-I*(-c^2*x^2+1)^(1/2)*x*c-1)*(I+arcsin(c*x))/c^2/(c^2*x^2-1)-1/8*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*
x^2+1)^(1/2)*x*c+c^2*x^2-1)*(arcsin(c*x)-I)/c^2/(c^2*x^2-1)+1/72*(-d*(c^2*x^2-1))^(1/2)*(4*I*(-c^2*x^2+1)^(1/2
)*x^3*c^3+4*c^4*x^4-3*I*(-c^2*x^2+1)^(1/2)*x*c-5*c^2*x^2+1)*(-I+3*arcsin(c*x))/c^2/(c^2*x^2-1))

________________________________________________________________________________________

maxima [A]  time = 0.52, size = 188, normalized size = 1.00 \[ -\frac {2}{27} \, b^{2} {\left (\frac {\sqrt {-c^{2} x^{2} + 1} d^{\frac {3}{2}} x^{2} - \frac {7 \, \sqrt {-c^{2} x^{2} + 1} d^{\frac {3}{2}}}{c^{2}}}{d} + \frac {3 \, {\left (c^{2} d^{\frac {3}{2}} x^{3} - 3 \, d^{\frac {3}{2}} x\right )} \arcsin \left (c x\right )}{c d}\right )} - \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} b^{2} \arcsin \left (c x\right )^{2}}{3 \, c^{2} d} - \frac {2 \, {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} a b \arcsin \left (c x\right )}{3 \, c^{2} d} - \frac {2 \, {\left (c^{2} d^{\frac {3}{2}} x^{3} - 3 \, d^{\frac {3}{2}} x\right )} a b}{9 \, c d} - \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} a^{2}}{3 \, c^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

-2/27*b^2*((sqrt(-c^2*x^2 + 1)*d^(3/2)*x^2 - 7*sqrt(-c^2*x^2 + 1)*d^(3/2)/c^2)/d + 3*(c^2*d^(3/2)*x^3 - 3*d^(3
/2)*x)*arcsin(c*x)/(c*d)) - 1/3*(-c^2*d*x^2 + d)^(3/2)*b^2*arcsin(c*x)^2/(c^2*d) - 2/3*(-c^2*d*x^2 + d)^(3/2)*
a*b*arcsin(c*x)/(c^2*d) - 2/9*(c^2*d^(3/2)*x^3 - 3*d^(3/2)*x)*a*b/(c*d) - 1/3*(-c^2*d*x^2 + d)^(3/2)*a^2/(c^2*
d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,\sqrt {d-c^2\,d\,x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*asin(c*x))^2*(d - c^2*d*x^2)^(1/2),x)

[Out]

int(x*(a + b*asin(c*x))^2*(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c**2*d*x**2+d)**(1/2)*(a+b*asin(c*x))**2,x)

[Out]

Integral(x*sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x))**2, x)

________________________________________________________________________________________